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Abstract

The behavior of a classical charged point particle under the influence of only a Coulombic

binding potential and classical electromagnetic zero-point radiation, is shown to yield agreement

with the probability density distribution of Schrödinger’s wave equation for the ground state of

hydrogen. These results, obtained without any fitting parameters, again raise the possibility that

the main tenets of stochastic electrodynamics (SED) are correct, thereby potentially providing

a more fundamental basis of quantum mechanics. The present methods should help propel yet

deeper investigations into SED.
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The following fact probably comes as a surprise to most physicists. A group of re-

searchers in the past have both proposed and deeply investigated the idea that classical

electrodynamics, namely, Maxwell’s equations and the relativistic version of Newton’s equa-

tion of motion, may describe much, if not all, of atomic physical processes, provided one

takes into account the appropriate classical electromagnetic random radiation fields acting

on classical charged particles. Stochastic electrodynamics (SED) is the usual name given

for this physical theory; it was most significantly advanced in the 1960s by Boyer [1],[2] and

Marshall [3], [4], [5], although its full history is somewhat more complicated and is reviewed

and described in Ref. [6]. Other useful reviews exist such as Refs. [7], [8], and [9].

SED is really a subset of classical electrodynamics. However, it differs from conventional

treatments in classical electrodynamics in that it assumes that if thermodynamic equilibrium

of classical charged particles is at all possible, then a thermodynamic radiation spectrum

must also exist and must be an essential part of the thermodynamic system of charged

particles and radiation. As can be shown via statistical and thermodynamic analyses

[1], [10], if thermodynamic equilibrium is possible for such a system, then there must exist

random radiation that is present even at temperature T = 0. This radiation has been termed

classical electromagnetic zero-point (ZP) radiation, where the “ZP” terminology stands for

T = 0, as opposed to “ground state” or “lowest energy state”. Either of the following

requirements has been shown to enable the derivation of the required functional form of

the ZP radiation spectrum: (1) the ZP radiation must possess a Lorentz invariant character

[1], and (2) no heat must flow during reversible thermodynamic operations [10],[11],[12].

Deriving the ZP spectral form from (1) follows only from the radiation properties, while (2)

involves the interaction of both particles and fields.

Results have been obtained from SED that agree nicely with quantum mechanical (QM)

predictions for linear systems [13], such as for systems of electric dipole simple harmonic

oscillators [8],[9], and for linear electromagnetic fields in Casimir/van der Waals type situ-

ations [6],[12],[14]. Moreover, most physicists, who know of SED, are likely to agree that

SED provides a better description of physical processes than does conventional classical

electrodynamics without the consideration of ZP and Planckian electromagnetic radiation.

Nevertheless, since the late 1970s and early 1980s, the vast majority of physicists have clearly

concluded that SED cannot come close to predicting the full range of QM phenomena for

nonlinear dynamics found in real atomic systems [15], [16], [17],[18], [19], [20], [9], [6]. In
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particular, these past analyses of SED predicted clear disagreements with physical observa-

tion, such as that a single hydrogen atom will ionize at T = 0 and that the spectra predicted

by SED does not agree with QM predictions.

However, as discussed in Refs. [21] and [22], reasons exist to raise some doubts on these

conclusions. In particular, for atomic systems, all of the key physical effects should arise from

electromagnetic interactions. Examining other nonlinear binding potentials, other than ones

arising from Coulombic binding potentials, have no relation to real physical atomic systems.

Even though one can place any potential function in Schrödinger’s equation, and attempt

to solve it, SED does not need to match these solutions as they have little relationship, in

detail, to the real physical world of atomic systems. Instead, realistic binding potentials

must be examined. Moreover, for perturbation analyses, if one assumes that the small

effect of the electric charge is a key part of the perturbation analysis, then this effect must

be consistently carried out for the radiation reaction as well as for the binding potential and

the effect of the ZP field acting on the orbiting charge [22]. Still, properly accounting for

these objections into an improved analytic, or even semi-analytic, reanalysis of SED, has

seemed quite difficult.

For that reason, in this article we have turned to attacking one of the more significant

problems in SED via simulation methods, namely, the hydrogen atom. The present results

certainly seem to bear out the hope that the earlier impasse in SEDmay have been due to the

difficulties of analyzing nonlinear stochastic differential equations, rather than a fundamental

physical flaw in the basic ideas of SED.

In quick summary, the present simulation work was carried out by tracking individual

trajectories of electrons for long lengths of time, assuming classical electrodynamics governed

the trajectories. Probability distributions were then obtained in coordinate space based on

the length of time the electrons spent in regions of space about the nucleus. References

[23],[24], [25], and [26] contain many of the technical details that led to the present work,

although these previous works concentrated on the nonlinear dynamical effects of a classical

electron, with charge −e and rest mass m, in orbit about an infinitely massive nucleus of
charge +e, where besides the binding potential acting, only a limited set of plane waves

acted on the electron. In that work, as here, we have numerically solved the nonrelativistic

3



approximation to the classical Lorentz-Dirac equation [27],[28]:

mz̈ = − e2z

|z|3 +Rreac + (−e)
½
E [z (t) , t] +

ż

c
×B [z (t) , t]

¾
,

where the radiation reaction term of Rreac has been approximated by Rreac ≈ 2
3
e2

c3
d3z
dt3

≈
2
3
e2

c3
d
dt

³
− e2z

m|z|3
´
, and whereE andB represent the electric and magnetic fields of the radiation

acting on the electron. We note that to date we have carried out a fair bit of numerical

analysis involving full relativistic computation, but, for the results reported here, the key

effects of our present system are adequately represented by the above equations.

The electromagnetic ZP field formally consists of an infinite set of frequencies, which

clearly would be impossible to implement fully in any sort of numerical scheme. Conse-

quently, we limited the number of frequencies in the simulation to ranges that had the most

significant effect on the electron’s orbital motion. We did so in two ways. Often the ZP

radiation fields are represented in SED by a sum of plane waves [6]:

EZP (x, t) =
1

(LxLyLz)
1/2

∞X
nx,ny,nz=−∞

X
λ=1,2

ε̂kn,λ [Akn,λ cos (kn · x−ωnt) +Bkn,λ sin (kn · x−ωnt)] ,

with nx, ny, and nz integers, kn = 2π
³
nx
Lx
x̂+ny

Ly
ŷ+nz

Lz
ẑ
´
,ωn = c |kn|, kn · ε̂kn,λ = 0,

ε̂kn,λ · ε̂kn,λ0 = 0 for λ 6= λ0, and Akn,λ and Bkn,λ are both real quantities. BZP (x, t) is

expressed by replacing ε̂kn,λ by
³
k̂n×ε̂kn,λ

´
in the above expression for EZP (x, t). In the

above, Lx, Ly, and Lz are dimensions of a rectilinear region in space. Usually at the end of

SED calculations, these dimensions are taken to a limit of infinity. For our simulation, we

wanted them to be large, but not so large that they created too many plane waves to prohibit

numerical simulation. The coefficientsAkn,λ andBkn,λ were taken to be independent random

variables generated once at the start of each simulation, via a random number generator rou-

tine, and then held fixed in value for the remainder of the simulation. The random number

generator algorithm was designed to produce a Gaussian distribution for these coefficients,

with an expectation value of zero, and a second moment of,
­
A2kn,λ

®
=
­
B2
kn,λ

®
= 2π~ωn.

The latter specification corresponds to the energy spectrum of classical electromagnetic ZP

radiation of ρZP (ω) = ~ω3/ (2πc3) [6].

For reasons to be explained shortly, the orbit of the electron was forced to lie in the x−y

plane. We retained plane waves in our simulation from the summation expression above

for the ZP fields, up to an angular frequency that corresponded to that of an electron in a
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circular orbit of radius 0.1 Å, or, ωmax ≈ 5.03× 1017 s−1. For our simulations, we chose Lx =

Ly = 37.4 Å and Lz = 40, 850, 000 Å ≈ 0.41 cm, bearing in mind that this scenario has some
similarity to an atom situated in a rectilinear cavity with highly conducting walls of these

dimensions; thus, this “cavity”, or region of space, was made very narrow (≈ 37 Å), but still
fairly large in width compared to the Bohr radius (≈ 0.53 Å), and comparatively very long
(≈ 0.41 cm). This procedure was done to keep the number of plane waves needed as small
as possible, while still attempting to retain the most important physical effects. By making

Lx and Ly so very much smaller than Lz, then if nx or ny was anything other than zero,

the frequency of the associated plane wave would be greater than c2π/Lx ≈ 5.04× 1017 s−1,
thereby enabling us to drop such waves in this approximation scheme. Consequently, only

waves traveling in the +ẑ and −ẑ were retained; the value of Lz we chose then resulted in

≈ 2.2× 106 plane being used in the simulation. The minimum, nonzero, angular frequency
in the simulation was ωmin = c2π/Lz ≈ 4.61 × 1011 s−1, which corresponds to the angular
frequency of an electron in a circular orbit of radius ≈ 1.06 × 10−5 cm, or, about 2000
times the size of the Bohr radius, aB ≈ 0.53 Å. In this way, we expected to simulate the

approximate behavior of the classical electron in the SED scheme, for radii lying between

about 0.1 Å to hundreds of Angstroms.

This approximate method for representing the desired physical situation greatly reduced

the number of plane waves required if Lx, Ly, and Lz were all made equal to ≈ 0.41 cm.
Although physically this last approach would be more desirable, it would have resulted in

an absurd number of plane waves to handle numerically, namely, (2.2× 106)3 ≈ 1019 waves.
Nevertheless, even our much reduced number of 2.2 × 106 waves created expensive runs in
CPU time. Consequently, we experimented with and found a second approximation method

that reduced our CPU times yet further, while still retaining key physical effects. We will

refer to this second method as our “window” approximation.

Specifically, as discussed in Refs. [23] and [26], we found that each plane wave effected

near-circular orbits most significantly for orbital angular frequencies lying within a fairly

narrow range of the angular frequency of the plane wave itself. Figure 9 in Ref. [26]

best illustrates this point. Our numerical experiments found that for the average range

of plane wave amplitudes in the present simulation scheme, that a window of ±3% about

each average radius more than adequately accounted for the most significant effects. We

were prepared to examine a much more complicated window algorithm due to elliptical orbit
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considerations, based on the work of Ref. [24], but numerical experiments showed that the

eccentricity of the orbits remained small throughout the simulation runs, thereby reducing

the need for such considerations. Since the angular frequency of the classical electron in a

circular orbit is e/ (mr3)
1/2, the specific algorithm we implemented kept track of the radius

r and retained in the simulation the plane waves with angular frequencies that fell within

a range of e/ (mr3H)
1/2 to e/ (mr3L)

1/2, where rL = r (1− f) and rH = r (1 + f), where f

was selected in these simulations to be 0.03, based on resonance width analysis. As r

changed, this scheme automatically changed the range of plane wave frequencies included in

the summation to act on the electron, but always considered only those specific plane waves

already initialized via the random number generation carried out at the beginning of the

simulation. Future speedups in the simulation might well profit by lowering the value of f

yet further, and/or by treating it as a function of r to better fit resonance width as r varies.

A typical simulation produced roughly circular orbits that would grow and shrink in

radius over time, as seen in Fig. 1. We carried out 11 simulations, each with the starting

condition of r = 0.53 Å, but with different seeds in the random number generation scheme

to create a different set of plane waves. Consequently, the trajectory of each of these

simulations was completely different, although the general character of each was similar.

We used a Runge-Kutta 5th order algorithm, with an adaptive stepsize. The simulation

code was written in C; the runs were carried out on 11 separate Pentium 4 PCs, each with

1.8 GHz processing speed and 512 MB of RAM. The CPU times for each run was about

5 CPU days, with some more and some less, as we attempted to have all electrons tracked

for reasonably close to the same length in time. However, for those electrons spending

more time near the nucleus, the calculations took longer because of the faster fluctuations

involved. The net time for all runs was about 55 CPU days.

Each of the four snapshots in Fig. 2 show the radial probability density curve, PQM (r) vs.

r, from Schrödinger’s wave equation for the ground state of hydrogen, versus the probability

distribution calculated at the indicated snapshot in time. In Fig. 2(a), the simulated

trajectories still strongly show the character of the initial condition of r = 0.53 Å. However,

each succeeding snapshot shows a striking convergence toward PQM (r). Moreover, the

probability distribution for the end of each of the individual eleven runs has a reasonable

resemblance to PQM (r), although combining all of the results together provides a better

match, presumably due to the net longer simulation run and the greater sampling over field
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conditions. We anticipate that future tests of interest will involve other initial starting

points, deeper testing for ergodicity, etc.

These simulation results follow the qualitative idea that Boyer originally suggested in

1975 [29] that for larger radial orbits, the dominant part of the ZP spectrum that will effect

the orbit will be the low frequency regime, which has a low energetic contribution, thereby

leading on average to a decaying behavior of the orbit. However, for orbits of smaller

radius, then the electron will interact most strongly with the higher frequency components

of the ZP field, which have a larger energetic contribution. Hence, for smaller radii, the

probability greatly increases that the ZP field will act to increase the orbit size. In this

way, a stochastic-like pattern should emerge for the electron [Fig. 1].

Without question, the simulations presented here do not “prove” that SED works for

atomic systems. There are far more tests and phenomena to still be examined, such as

atomic spectra, many electron situations, spin, an understanding of how “photon” behavior

arises, relativistic corrections and very high frequency effects. We are presently investigating

some of these areas. Nevertheless, there is also the very real possibility, far stronger now that

we see predictions for the hydrogen atom in fairly close agreement with physical observation,

that the core ideas of SED provide a fundamental perspective on nature and a potential basis

for QM phenomena.
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Figure Captions

Figure 1: Typical plot of r vs. t for one trajectory realization via the methods described

here. The inset shows the probability density P (r) vs r computed for this particular

trajectory.

Figure 2: Plots of the radial probability density vs. radius. The solid line was calculated

from the ground state of hydrogen via Schrödinger’s equation: P (r) = 4πr2 |Ψ (x)|2 =
4r2

a3B
exp

³
− 2r

aB

´
, where aB = ~2/me2. The dotted curves are the simulation results, calculated

as a time average for all eleven simulation runs from time t = 0 to the average time indicated:

(a) 1.559× 10−11 sec; (b) 4.950× 10−11 sec; (c) 6.275× 10−11 sec; (d) 7.977× 10−11 sec.
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